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Abstract

This study is aimed at looking into the flatness con-
trol of the vehicle detailing adopted mechanisms and
approaches in order to be able to control this system
in the presence of disturbances and to solve prob-
lems encountered during its functioning. A trajec-
tory tracking controller based on differential flatness
is presented for a nonlinear vehicle model. Selected
results of numerical simulations are shown. At the
end of this work, a comparative study between the
real moving and the desired one has been presented.
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1 Introduction

Vehicles driving at high speeds have received sub-
stantial research attention recently, as highlighted by
the DARPA Grand Challenge competitions[1],[2].
This paper considers the problem of trajectory
tracking control near the limits of tire-road friction
for robotic vehicles with front wheel steering.
A challenge of vehicle control near the limits of
friction is the nonlinear behavior of the tire forces
and potentially unstable dynamics for large slip
angles. Unstable equilibrium points may be present,
depending on the vehicle speed, steering angle, and
tire properties[3]. A path tracking control algorithm
commonly used for robotic vehicles with front wheel
steering is pure pursuit[4]. These approaches sup-
port a variety of models and performance objectives,
though the computational demands of real-time
numerical optimization may be prohibitive, particu-
larly for low-cost microcontrollers. Recent research
in trajectory tracking control has focused on sys-
tems with a property known as differential flatness.
A nonlinear systemẋ = f(x, y)is differentially flat
if an output y can be found such that the states x
and inputs u can be expressed in terms of y and
a finite number of its derivatives[5]. The flatness

property was introduced by M. Fliess, J. Lévine,
P. Martin and P. Rouchon in 1992 to propose
a new strategy to control continuous nonlinear
systems with good performances in term of tracking
trajectory. At first, the use of this property consists
in the definition of an output trajectory allowing
the determination of the variables of the flat system.
Secondly, it concerns the elaboration of the control
in closed- loop allowing, to obtain a stable system
giving place to a tracking of a desired trajectory
with an error which tends asymptotically towards
zero. A benefit of flat systems is that flat outputs
can follow arbitrary trajectories yd provided that
the trajectory is sufficiently smooth.
Many scientists have used the application of the
differential flatness theory in order to solve problems
in relation to the motion of vehicles [6], [7], [8], [9].

This paper presents a trajectory tracking con-
troller for the flat output located at the position
of the rear wheel. The position of this point is
an advantageous choice of flat output as it can be
controlled to track trajectories with finite accelera-
tion. The states and the in puts of the flat system
can be expressed in function of the particular out
puts and their successive derivatives. We can find a
lot of the literature uses linear approaches[10],[11],
[12]or approaches of optimal control [13]. A benefit
of flat systems is that flat outputs can follow arbi-
trary trajectories yd(t) provided that the trajectory
is sufficiently smooth. For example, a front-steered
bicycle driving in a plane without wheel slip is a
flat system whose flat output is the position of the
rear wheel[14], which has been exploited for vehicle
tracking control [15], though the no-slip assumption
restricts its applicability. Another flat output is the
position of the Huygens center of oscillation (C.O.)
of certain types of rigid body systems, including a
vertical take-off and landing aircraft[16], [17]. States
related to this point have been identified as flat out-
puts for a bicycle model with friction forces acting at
the front and rear tires, as described below. There
exists a point near the front wheels whose lateral
body-fixed acceleration is decoupled from the rear
lateral tire force. This decoupling was exploited to
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design a steering controller for the body fixed ac-
celeration at that point[18]. It was later noted that
both the point identified by Ackermann at the front
of the vehicle and a similar point at the rear of the
vehicle are centers of oscillation. The body-fixed ve-
locity components at the rear C.O. were identified
as flat outputs and a corresponding flatness-based
controller defined[19]. The position of the rear C.O.
was chosen as the flat output in a trajectory track-
ing controller by Setlur [20]. Other flat outputs have
been considered under the assumption of constant
speed and linear tire force models [21],[22].
This paper presents a trajectory tracking con-

troller for the flat output located at the rear C.O.
The position of this point is an advantageous choice
of flat output as it can be controlled to track tra-
jectories with finite acceleration; however the front
C.O. requires an additional degree of smoothness in
reference trajectories. We here interested to exploit
the concept of the flatness in order to control the
system vehicle. This paper is organized as follow:
in section 2, we present the dynamic model of the
vehicle. In section 3, the vehicle is modeled by a flat
system. Section 4 deals with flatness and lineariza-
tion. Section 5 deals with flatness and trajectories
generation. In section 6, we present the flatness and
the tracking of trajectory. Finally, section 7 shows
experimental results

2 Formulation of the problem

We consider a four wheel vehicle driving with-
out sliding on a horizontal plane. We suppose
a point Pwhich its coordinates are(x, y) on the
plan(O,X, Y )and another point Q respectively the
middle of the rear axle and the front axle (figure1).
We have PQ = l, θ the angle between the vehicle
axis and the OX axis and φ the steering angle of
the wheels. The conditions without sliding bearing

are: d
−−→
OP
dt is parallel to

−−→
PQet d

−−→
OQ
dt is parallel to the

front wheels. We note: u = d
−−→
OP
dt .

−−→
PQ
PQ . The tabu-

lar diagram of the vehicle is given by the following
figure:

2.1 Model of the vehicle

We consider the dynamic model of the vehicle:

ẋ = u cos θ (1)

ẏ = u sin θ (2)

θ̇ =
u

l
tan θ (3)

The implicit form done:

ẋ sin θ − ẏ cos θ = 0 (4)
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Figure 1: A driving vehicle without sliding

3 Flat systems

Let us consider the nonlinear system described by
the following differential equation:

ẋ = f(x, u) (5)

with,x ∈ Rn:the state of the system, andu ∈ Rm:the
control of the system. Flatness implies the existence
of a vector-valued function h;
ie:

z = h(x, u1, ..., u
(β1)
1 , ..., um, ..., u(βm)

m ) (6)

where(z = z1, ..., zm).The components of x and u
are, moreover, given without any integration proce-
dure by the vector-valued functions A and B :

x = A(z1, ..., z
(α1)
1 , ..., zm, ..., z(αm)

m ) (7)

u = B(z1, ..., z
(α1+1)
1 , ..., zm, ..., z(αm+1)

m ) (8)

Then, to show that a system is flat differentially, it
is sufficient to find a flat output and this last has
often a physical sense. We can choose the position
of the point P denoting by (x, y), and we verify if
it presents a flat output, that is to say, verify that
all variables and all controls of the system can be
expressed in function of this chosen output. The
equation (1) and (2) done:

tan θ =
ẏ

ẋ
(9)

u2 = ẋ2 + ẏ2 (10)

We derive the expression of tan θ we obtain:

θ̇(1 + tan θ2) =
ÿẋ− ẏẍ

ẋ2
(11)

So we have:

θ̇ =
ÿẋ− ẏẍ

ẋ2 + ẏ2
(12)
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The third equation of the system done:

tanφ =
lθ̇

ϑ
= l

ÿẋ− ẏẍ

(ẋ2 + ẏ2)
3
2

(13)

It is easy to see that all variables of the system denot-
ing by (x, y, θ, u, φ) can be expressed in function of x
and y and of their derivatives until the order 2, this
result is compatible with the principle of flatness.
The interpretation of the singularities at the speed
equal to zero, is that the robot does not stop nor
starts brutally, as well as if it turns, there is noth-
ing. To overcome these singularities, we decouple
the geometric aspect of the trajectory of evolution
on this path. For this we will proceed by the param-
eterizations of the curvilinear abscissa σ(t)such that
if T is the duration of movement, so we have: σ(0) =
0, σ(T ) = 1, σ̇(0) = σ̇(T ) = 0, σ(t) = ( t

T )
2(3− 2 t

T )
Considering the geometry of the robot trajectory

described by: [xd(σ), yd(σ)]and using the definition
of the curvilinear abscissa:

ẋ2 + ẏ2 = 1 (14)

So we obtain

u(t) = σ̇(t) (15)

θ(t) = arctan
ẏ

ẋ
(16)

φ = arctan l
ÿẋ− ẏẍ

(ẋ2 + ẏ2)
3
2

(17)

4 Flatness and linearization

We are interested in this paragraph to appear a dy-
namic endogenous feedback. In fact, we can put

x2 = ν1 (18)

y2 = ν2 (19)

Then, the dynamic endogenous feedback can be cal-
culated by identifying the derivatives ofx and y until
order 2 with their expressions in terms of inputsu
and φ. By deriving equations (1) and (2) and using
(14) and (15), we have:

ẍ = u̇− u2

l
sin θ tanφ = ν1 (20)

ÿ = u̇+
u2

l
cos θ tanφ = ν2 (21)

This trajectory y = Y (x) must verify the four con-
ditions denoting by:

yi = Y (xi),
dY

dx
(xi) = 0,

d2Y

d2x
(xi) = 0 (22)

yf = Y (xf ),
dY

dx
(xf ) = 0,

d2Y

d2x
(xf ) = 0 (23)

We can choose the polynomial of third degree in x
denoting by:

Y (x) = yi+(yf−yi)(
x− xi

xf − xi
)3(10−15(

x− xi

xf − xi
)+6(

x− xi

xf − xi
)2)

(24)
which satisfied the last conditions. It remains to
construct the trajectory t −→ x(t) which verifies:

x(ti) = xi, ẋ(ti) = 0 (25)

x(tf ) = xf , ẋ(tf ) = 0 (26)

Then, we will get the following polynomial denot-
ing by:

x(t) = xi + (xf − xi)(
t− ti
tf − ti

2

(3− 2(
t− ti
tf − ti

)) (27)

5 Flatness and tracking of tra-
jectory

By using the expression of the dynamic endogenous
feedback calculated in section 4 and the expressions
of (19), (20), we will have the following curly system

ẋ = u cos θ (28)

ẏ = u sin θ (29)

θ̇ =
1

u
(−ν1 sin θ + ν2 cos θ) (30)

ϑ̇ = ν1 cos θ + ν2 sin θ (31)

We have a curly system of order 2 equal to the order
of the curly system (17) and (18). Thus, we can
choose, if we measure all the state (x, y, θ) and if u ̸=
0 , we obtain the following expressions corresponds
of the new controls denoting by:

ϑ1 = ν∗1 −
∑

k1j(x
(j) − x∗)(j)) (32)

ϑ2 = ν∗2 −
∑

k2j(y
(j) − (y∗)(j)) (33)

ν∗1 and ν∗2 are the inputs of references which corre-
sponds of trajectories of references x∗ and y∗ . The
constant k1j and k2j are chosen in order to assure
the stability of the systems denoting by:

e
(2)
1 + k11e

(1)
1 + k10e1 = 0 (34)

e
(2)
2 + k21e

(1)
2 + k20e2 = 0 (35)

6 Simulations

Figures 2 and 3 shows the movements of the real tra-
jectory which try to follow the desired one along the
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X axis despite the presence of disturbances. Figures
4 and5 represents the movements of the real trajec-
tory which try also to follow the desired one along
the Y axis in the presence of disturbances. The last
figures presents the two controls of the vehicle which
are in oscillation phase in order to force real trajec-
tories to follow the desired one. Finally, it is obvious
that the satisfactory output tracking performance
has been almost achieved through the proposed con-
trol scheme.

7 Conclusion

In this paper we are proposed a flatness control of a
vehicle in presence of disturbances. A flatness con-
trol is used to generate the desired trajectory and
to force the vehicle to follow it. It is clear that the
tracking errors resulting for the two movements (X
axis and Y axis) are almost acceptable and the oscil-
lation which present in the controls of the system are
due to the disturbances, in this case we try to find
another method more robust to perturbations which
can force the system to follow trajectories without
any oscillations at the controls.
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[14] M. Fliess, J. L. Lévine, P. Martin, P. Rouchon,
Flatness and defect of non-linear systems: in-
troductory theory and examples, International
Journal of Control, v. 61, n. 6, pp. 1327-1361,
1995.

[15] M. Schorn, U. Stahlin, A. Khanafer, R. Iser-
mann, ”Nonlinear trajectory following control for
automatic steering of a collision avoiding vehicle,
Proc. of American Control Conference, pp. 5837-
5842, June 2006.

[16] P. Martin, S. Devasia, B. Paden, A different
look at output tracking control of a VTOL air-
craft, Proc. of 33rd IEEE Conf. on Decision and
Control, v. 3, pp. 2376 -2381, 1994.

[17] R. Murray, M. Rathinam, W. Sluis, Differen-
tial Flatness of Mechanical Control Systems: A
Catalog of Prototype Systems, Proc. ASME Int’l
Mechanical Engineering Congress and Exposi-
tion, 1995.

4

PC
Typewriter
40



[18] Jurgen Ackermann, Robust decoupling, ideal
steering dynamics and yaw stabilization of 4WS
cars, Automatica, v. 30, n. 11, pp. 1761- 1768,
November 1994.

[19] S. Fuchshumer, K. Schlacher, T. Rittenschober,
Nonlinear Vehicle Dynamics Control - A Flatness
Based Approach, Proc. of 2005 IEEE Conf. on
Decision and Control and 2005 European Control
Conference, pp. 6492-6497, December 2005.

[20] P. Setlur, J. Wagner, D. Dawson, D. Braganza,
A trajectory tracking steer-by-wire control sys-
tem for ground vehicles, IEEE Trans. On Vehic-
ular Technology, v. 55 n. 1, pp. 76-85, 2006.

[21] J. Villagra, B. d’Andrea Novel, H. Mounier,
M. Pengov, Flatnessbased vehicle steering con-
trol strategy with SDRE feedback gains tuned
via a sensitivity approach, IEEE Trans. on Con-
trol Systems Technology, v. 15, n. 3, pp. 554-565,
May 2007.

[22] S. Antonov, A. Fehn, A. Kugi, A new flatness-
based control of lateral vehicle dynamics, Vehicle
System Dynamics, v. 46, n. 9, pp. 789-801, 2008.

Figure 2: The desired trajectory of x

Figure 3: The real trajectory of x

Figure 4: The real trajectory of y

Figure 5: The desired trajectory of y
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Figure 6: The control using flatness

Figure 7: The second control using flatness
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